MAGNOSTELLIN A AND B, NOVEL LIGNANS FROM MAGNOLIA STELLATA

TOSHIYUKI IIDA, YUKIO NORO and KAZUO ITO

Faculty of Pharmacy, Meijo University, Yagoto, Tempaku, Nagoya 468, Japan

(Received 30 April 1982)

Key Word Index—Magnolia stellata, Magnoliaceae, lignans, sesamin, kobusin, eudesmin, (+)-piperitol, magnostellin A, magnostellin B, vomifoliol (blumenol A), ¹³C NMR

Abstract—The phytochemistry of fresh leaves of Magnolia stellata was compared with that of M kobus Two new lignans, viz magnostellin A and magnostellin B were isolated together with sesamin, kobusin, eudesmin and (+)-piperitol The structures of magnostellin A and B were determined An α -ionone, vomifoliol (blumenol A) was also isolated from the same source

INTRODUCTION

In a preceding paper, we investigated sesamin-type lignans and hydroperoxides of 9-oxonerolidol from Magnolia kobus [1] The title species (Japanese name Shide-kobushi), a valuable decorative plant, is only distributed in central districts of Japan The leaves and stems of M stellata were found to contain many mono- and sesquiterpenes [2] and a quarternary alkaloid, salicifoline [3]

Extensive chromatography on Si gel of chloroform extracts of fresh leaves of M stellata led to the isolation of a phenolic lignan, (+)-piperitol (4) and alcoholic tetrahy-

drofuranoid lignans, which were named magnostellin A (5) and magnostellin B (6), along with three known lignans [sesamin (1), kobusin (2), eudesmin (3)] and an α -ionone derivative [vomifoliol (7)] [4]

RESULTS AND DISCUSSION

The first lignan, was a colorless oil, $C_{22}H_{20}O_6$ (M⁺, 356), $[\alpha]_D + 452^{\circ}$ (CHCl₃) having a phenolic hydroxyl group and the same functional groups as those of kobusin (2) It shows a very similar ¹H NMR spectrum to that of (-)-piperitol which was isolated from *Xanthoxylum*

I
$$R_1$$
, $R_2 = -0CH_2O -$, $R_{\overline{3}}$, $R_4 = -0CH_2O -$

2
$$R_1$$
, $R_2 = -OCH_2O -$, $R_{\bar{3}} = R_4 = OMe$

3a
$$R_1 = R_2 = R_3 = R_4 = OMe$$
, $2\beta - H$, $6\alpha - H$

4
$$R_1 = OH$$
, $R_2 = OMe$, R_3 , $R_4 = -OCH_2O-$

212 T IIDA et al

Table 1 ¹³C NMR data (δ-values) for magnostellin A (5) and magnostellin B (6)

Carbon no	5	6
1	44 0 d	56 0 d
2	87 8 d	83 5 d
4	69 5 1	74 6 t
5	48 1 d	75 0 d
6	73 1 d	166 3 s
8	13 0 q	63 41
1'	∫ 1355s	12215
1"	13645	133 2 s
2'	{ 109 0 d	109 1 d
2"	{ 109 6 d	110 3 d
3'	§ 148 3 s	∫ 149 2 s
3"	{ 148 6 s	(148 9 s
4′	∫ 149 0 s	153 3 s
4"	14915	148 7 s
5′	∫ 111 0 d	111 0 d
5"	{ 111 2 d	112 1 d
6′	{ 118 0 d	119 1 d
6"	{ 118 4 d	123 6 d

Run in CDCl₃ at 25 MHz, s, singlet, d, doublet, t, triplet, q, quartet Assignment establishment by frequency off-resonance decoupling

piperitum [5, 6] When 4 was methylated with diazomethane it yielded kobusin (2) Hence, 4 was identified as (+)-piperitol

The second lignan, magnostellin A was obtained as a colorless oil, $C_{22}H_{28}O_6$ (M⁺, 388), $[\alpha]_D + 680^\circ$ (CHCl₃) and showed IR absorption for a hydroxyl group at 3600 cm⁻¹ The ¹H NMR spectrum revealed the presence of one secondary methyl, two methine protons (H-1, H-5) and two benzylic methine protons (H-2, H-6) attached to a carbon atom bearing a hydroxyl group and a furan oxygen group, along with six aromatic methoxyl groups and six aromatic protons In the ¹H NMR spectrum of its acetate, one benzylic methine proton signal $[\delta 582, (d, J = 65 \text{ Hz},$ H-6) was shifted by 1 04 ppm downfield and the other signal (H-2) did not change These ¹H NMR data showed that magnostellin A had an \alpha-substituted (3',4'dimethoxy)benzyl alcohol moiety and a veratryl group linked to the C-2 atom of the tetrahydrofuran ring From the above physical data and 13C NMR spectral data (Table 1), the plane structure 5 is proposed

The relative stereostructure of 5 was determined by NOE experiments Irradiation at the frequency of the methine proton (H-8) enhanced 116% and 100% of the area intensity of the H-2 and H-6 signals, respectively Hence, the relationship between C-5-C-6, C-1-C-8 and H-2 was found to be cis in the plane of the tetrahydro ring (1S, 2S, 5S) Furthermore, the configuration (R) of the hydroxyl group attached to C-6 was also established using Horeau's method [7]

The third lignan, magnostellin B, colorless oil, $C_{22}H_{26}O_8$ [α]_D + 32 0°(CHCl₃), showed a hydroxyl at 3500 cm⁻¹ and ester group absorptions at 1720 cm⁻¹ in its IR spectra Magnostellin B, on acetylation gave a monoacetate [m/z 460 [M]⁺, IR ν_{max} (CHCl₃) cm⁻¹ 1735, 1720] Oxidation with PPC in methylene chloride at room temperature afforded an exomethylene keto derivative (6a) [m/z 234 [M]⁺, 203, 176, 161, 151, IR ν_{max}

(CHCl₃) cm⁻¹ 1740, 1650, 1610, 1600, ¹H NMR (CDCl₃) δ 4 24 (2H, dd, J = 16, 24 Hz, H-4), 5 24, 6 24 (2H, each d, J = 2 Hz, H-8), 5 64 (1H, m, H-2)] From the above experiments, ¹³C NMR data (Table 1) and decoupling technique magnostellin B was found to have secondary hydroxyl, veratryl and veratric ester groups Therefore, a plane structure 6 is proposed

The relative stereostructure of $\bf 6$ is proposed as follows. In epieudesmin (3a) the coupling constant indicating a cis relation ($J_{1H\ 2H}=7\ Hz$) is much larger than that of a trans relation ($J_{5H\ 6H}=4\ Hz$) [1] From this result it is anticipated that the relation between H-1 and H-2 should be cis by the coupling constant ($J_{1H\ 2H}=8\ Hz$) of $\bf 6$ Furthermore, according to biogenetic considerations the formation of $\bf 6$ should be from the oxidation of 5-hydroxyepieudesmin The rel-(1S,2S,5S) configuration is, therefore, proposed for $\bf 6$

EXPERIMENTAL

Mps are uncorr 1 H NMR (100 MHz) and 13 C NMR (25 MHz) CDCl₃ MS (70eV) direct insertion IR and $[\alpha]_{D}$ CHCl₃ UV MeOH Spots were detected on TLC in UV light (254 nm) after spraying with $10\%_{o}$ H₂SO₄ and then heating at 100° Si gel 60 (70–230 mesh) was used for CC and Si gel F-254 for TLC (0 25 mm) and prep TLC (0 5 mm)

Extraction and separation of compounds The MeOH extract of fr leaves (6 6 kg) of M stellata Maxim collected in October 1980 at Nagoya, was divided into n-hexane and CHCl₃-soluble fractions The CHCl₃ fraction was extracted repeatedly with 2% HCl soln and taken-up as the base Evaporation of the solvent from the dried extract afforded a gummy residue (130 g) which was chromatographed on Si gel (500 g), using C_6H_6 with gradually increasing proportions of EtOAc as eluent, and further purified by prep TLC The known compounds were characterized by spectroscopic methods (IR, 1 H NMR, MS)

The first fraction (C_6H_6 -EtOAc, 20 1) gave sesamin (1, 13 g), kobusin (2, 10 g), eudesmin (3, 4 g) and (+)-piperitol (4, 0 5 g) The second fraction (C_6H_6 -EtOAc, 1 1) gave magnostellin A (5, 0 3 g) The third fraction (EtOAc) gave magnostellin B (6, 0 15 g) and vomifoliol (7, 0 7 g)

(+)-Piperitol (4) Colorless oil, $[α]_D + 45 \, 2^\circ (CHCl_3, c \, 1 \, 0)$ IR $v_{max}^{CHCl_3} \, cm^{-1} \, 3570 \, 1615 \, UV \, \lambda_{max}^{MeOH} \, nm \, 208, 232, 283 \, MS \, m/z \, 356 \, [M]^+ \, (C_{20}H_{20}O_6), 325, 151, 149 \, ^1H \, NMR \, \delta \, 2 \, 88-3 \, 24 \, (2H, m, H-1, H-5), 3 \, 88 \, (3H, s, OMe), 3 \, 74-3 \, 94 \, (2H, m, H-4, H-8), 4 \, 18 \, (2H, dd \, J = 7, 9 \, Hz, H-4, H-8), 4 \, 71 \, (2H, d, J = 4 \, Hz, H-2, H-6), 5 \, 58 \, (1H, s, OH), 5 \, 92 \, (2H, s, OCH_2O), 6 \, 70-6 \, 94 \, (6H, m, Ar-H) \, ^{13}C \, NMR \, \delta \, 54 \, 3 \, (d, C-1), 85 \, 8 \, (d, C-2, C-6), 71 \, 7 \, (t, C-4, C-8), 54 \, 1 \, (d, C-5), 132 \, 9 \, (s, C-1'), 135 \, 1 \, (s, C-1''), 108 \, 1 \, (d, C-2'), 106 \, 5 \, (d, C-2''), 146 \, 8 \, (s, C-3'), 148 \, 0 \, (s, C-3''), 145 \, 3 \, (s, C-4'), 147 \, 1 \, (s, C-4''), 114 \, 4 \, (d, C-5'), 108 \, 7 \, (d, C-5''), 118 \, 9 \, (d, C-6'), 119 \, 3 \, (d, C-6'')$

Magnostellin B [rel-(1S, 2S, 5S)-1-veratroyloxymethyl-2-veratryl-5-hydroxytetrahydrofuran] (6) Colorless oil, $[\alpha]_D + 32.0^{\circ}$ (CHCl₃, c 0.8) ¹H NMR δ 2.5 (1H, m, H-1), 3.82, 3.84, 3.89 (12H, each s, OMe), 4.0 (2H, d, J = 4 Hz, H-4), 4.4 (2H, d, J = 6 Hz, H-8), 4.58 (1H, d, J = 8 Hz, H-2), 6.7–7.0 (4H, m, Ar-H), 7.36–7.56 (2H, m, Ar-H) ¹³C NMR Table 1

Vomifoliol (blumenol A) (7) Mp 107–109° [α]_D + 178 6° (CHCl₃, c 1 65) IR $v_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$ 3650–3200, 1665 UV $\lambda_{\rm max}^{\rm MeOH}$ nm 236 MS m/z 224 [M] $^+$ (C₁₃H₂₀O₃), 206, 124 1 H NMR δ 102, 108 (6H, each s, Me-6'), 128 (3H, d, J = 7 Hz, Me-2), 189 (3H, s, Me-2'), 230 (2H, dd, J = 17,26 Hz, H-5'), 26 (2H, br s, OH), 436 (1H, m, H-2), 58 (2H, dd, J = 16, 18 Hz, H-3, H-4), 588 (1H, br s, H-3')

REFERENCES

1 Iida, T, Nakano, M and Ito, K (1982) Phytochemistry 21, 673

- 2 Fujita, S and Wada, H (1980) Yakugaku Zasshi 100, 763
- 3 Tomita, M and Nakano, T (1952) J Pharm Soc 72, 1256
- 4 Takasugi, M, Anetai, M, Katsui, N and Masamune, T (1973)

 Chem Letters 245 and refs cited therein
- 5 Abe, F, Yahara, S, Kubo, K, Nonaka, G, Okabe, H and Nishioka, I (1974) Chem Pharm Bull 22, 2650
- 6 Pelter, A, Ward, R S, Rao, E V and Sastry, K V (1976) Tetrahedron 32, 2783
- 7 Kagan, H B (1977) Stereochemistry, Fundamentals and Methods Vol 3, p 51 Georg Thieme, Stuttgart